Industrial Technology
Stage 5 - Year 10
Hall Table
Contents

1. **Rationale** ... 3
2. **Description of project** .. 3
3. **Materials** .. 4
4. **Cutting list and Costing** .. 5
5. **Construction Process** ... 6
6. **Engineering Drawings** ... 7
1. Rationale
The purpose of this project is to design, develop and construct a project from a set of specifications. Students are to complete design research. This will hopefully allow greater understanding of the purpose of the project as well as the design and construction methods selected.

Design development resulting in individualisation of project is encouraged. An accompanying Portfolio will document all of these processes.

2. Description of project
The Hall Table is designed to be a useful item which elegantly blends into the homes furniture. This piece is taken from an era of grand Australiana homes with wide long hallways which would feature a hall table to sit any number of items, including keys, flowers, photo frames and more. This project is designed to be taken home by students and used practically in the home, it should be a visual reminder in years to come, of the usefulness the Stage 5 Industrial Technology course was. It also allows family member to see, use and appreciate something that you made.

The Hall Table employs many of the techniques use is larger projects and is designed as part of a sequenced progression of skill building. This is especially helpful for those students looking a completing Industrial Technology or Design and Technology in Stage 6. Widening Joints, leg and rail construction, doweling, planning and routed edge detailing are all elements of the project.
3. Materials

Warm, dense and resilient, Tasmanian Oak is the preferred hardwood for a wide range of applications. It works extremely well and produces an excellent finish. It can be used in all forms of construction and in interior applications such as paneling and flooring. It can be glue-laminated to cover long spans. Veneers, plywood and engineered products are also available. It is also a popular furniture timber, and its fibre is sought after for reconstituted board and production of high quality paper.

Tasmanian Oak is light in colour, varying from straw to reddish brown with intermediate shades of cream to pink. It is recognised for its excellent staining qualities, which allow ready matching with other timbers, finishes or furnishings.

Tasmanian Oak is marketed under different names depending on where it is being sold. In Victoria and NSW it is also sold under the trade name Victorian Ash.

www.woodsolutions.com.au
4. Cutting list and Costing
Hall Table – Tasmanian Oak

<table>
<thead>
<tr>
<th>Item</th>
<th>Timber size (mm)</th>
<th>Length (mm)</th>
<th>Quantity</th>
<th>$ per meter</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legs</td>
<td>42 x 42</td>
<td>900</td>
<td>4</td>
<td>9.85</td>
<td>35.46</td>
</tr>
<tr>
<td>Short Rails</td>
<td>65 x 32</td>
<td>150</td>
<td>2</td>
<td>8.66</td>
<td>2.60</td>
</tr>
<tr>
<td>Long Rails</td>
<td>65 x 32</td>
<td>600</td>
<td>2</td>
<td>8.66</td>
<td>10.39</td>
</tr>
<tr>
<td>Top</td>
<td>140 x 19</td>
<td>750</td>
<td>2</td>
<td>10.33</td>
<td>15.50</td>
</tr>
<tr>
<td>Backboard</td>
<td>90 x 12</td>
<td>300</td>
<td>1</td>
<td>6.29</td>
<td>1.89</td>
</tr>
</tbody>
</table>
5. Construction Process

- Cut two top pieces and biscuit together.
- Cut ends square on Table Saw.
- Route edge profile on Inverted Router.
- Cut Backboard to size and secure to the Top.
- Cut the short and long rails.
- Drill dowel holes on Slot Mortise. FACE-SIDE DOWN with 3mm Perspex sheet underneath to act as a spacer.
- Cut legs
- Drill dowel holes on Slot Mortise. FACE-SIDE DOWN
- Taper legs using a Hand Plane
- Extension: Turn a bead into the leg using the Lathe
- Dry assemble to test fit and tolerance, make necessary adjustments
- Final sand then Glue up. Pilot hole and countersink if screwing also.
- Finishing. Remove glue runs. Stain, paint or polyurethane?

